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SUMMARY  

In the present work Multidimensional Unfolding (MDU) is suggested as a new approach 
to support decision-making in plant breeding programs. It is an exploratory data analysis 
technique that yields the construction of a map, picturing the attractiveness of cultivars 
towards planting environments. The proposed approach is illustrated using data from a 
wheat plant breeding program in Portugal (1986–1999). MDU precedes the use of 
Linear Joint Regression Analysis (LJRA) (e.g. Pinto 2006) in the study of relationships 
between cultivars and environments, taking into account the cultivars’ performance 
evaluation. As regards the selection of the best cultivars, both approaches agree. 
Furthermore, MDU provides an additional advantage related to its easily interpreted 
results. In fact simplicity and interpretability may be considered the main advantages of 
the proposed approach.  

Key words: Multidimensional Unfolding, Linear Joint Regression Analysis, Plant 
Breeding Programs, Cultivar Selection. 

1. Introduction 

In a plant breeding program, a set of experiments occur during a certain 
number of years and locations (environments) with an open set of cultivars. 
This means that during the breeding program, cultivars are discarded at the 
same time as new ones are admitted into the plan. The use of different locations 
provides information concerning the responses of the different varieties to 
environmental conditions characterized by a set of factors (e.g. climatic 
conditions and types of soil). The selection process is based on the cultivars’ 
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performance measured by the corresponding yields. In addition, the genotype ×  
environment interactions are taken into account for evaluation of the cultivars’ 
performance.  

Multidimensional Unfolding (MDU) is a spatial distance model for the 
proximities between elements from two distinct groups of entities. The MDU 
output is a map where the elements of both sets of entities are represented by 
points and the distances between them represent the input proximity data. 
Common applications of MDU refer to non-metric data: typically subjects’ 
preferences for a set of objects or stimulus, marketing and psychometry being 
the best-known fields of application (Desarbo et al. 1997, Carrol, Green 1997, 
Heiser, Busing 2004).  

The present work suggests the use of metric MDU to construct a map 
representing data on cultivars’ performance. In the (two-dimensional Euclidean) 
derived map, cultivars and environments are represented by points, and the 
yield of each cultivar in a given environment is associated with the 
corresponding distance. Besides this introduction, the paper contains three 
sections. In the following section the metric MDU model is presented, as well 
as the PREFSCAL algorithm which is used to perform MDU analysis. In the 
third section, an application using the Portuguese wheat plant breeding program 
data (1986–1999) is presented, illustrating the use of MDU. This analysis is 
complemented by the use of an inferential tool – Linear Joint Regression 
Analysis (LJRA) – which is commonly used in plant breeding program 
management. In the final section the application results are discussed and some 
future research topics are suggested.     

2. Multidimensional Unfolding 

MDU input refers to two-mode, two-way data, corresponding to the 
proximities between the elements from two distinct sets of entities. The goal of 
MDU is to obtain a configuration (commonly bi-dimensional and Euclidean) 
where the elements of both sets are represented by points. In the output map, the 
distances between the elements of one set of entities relative to the other 
represent the initial proximity data. The transformation process of proximities 
into distances depends on the metric nature of the input data: a distinction is 
made between metric and non-metric approaches. The non-metric models refer 
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to ordinal data (e.g. subjects’ preferences for a set of objects). In the metric case 
the input data refer to distance measures.  

The unfolding model introduced by Coombs (1950) was generalized to the 
multidimensional case by Bennet, Hays (1960). These original techniques are 
non-metric. 

Schönemann (1970) found an algebraic solution to the problem of locating 
two sets of points in a joint space, given the Euclidean distances between the 
elements of both sets. The metric MDU technique makes it possible to represent 
H-dimensional data distances with a map (2 dimensions) providing the fit 
between the original distances and the final configuration. 

Further developments for multidimensional unfolding can be found in the 
context of multidimensional scaling, where unfolding is seen as a 
multidimensional scaling problem of off-diagonal matrices (e.g. Borg, Groenen 
2005).  

2.1 The Metric MDU Model 

Metric MDU input data can either be a matrix of dissimilarities or a matrix of 
similarities between the elements of two sets of entities. Let ijδ  be the 
dissimilarity between i  ( )I,...,1i = and j ( )J,...,1j =  elements of the first and 
second sets respectively. Then the input dissimilarities matrix is [ ]ij)JI( δ=∆ × . 
The MDS output is a configuration in a bi-dimensional Euclidean space, where 
the elements of both sets are represented by points with coordinates iu  and jv , 
and the Euclidean distance between them is denoted by ijd .  

The relationship between ijδ  and ijd  is given by  

( )ij ij ijd =f δ +e ,                                                                            (2.1) 

f being a parametric function, and ije  the random part corresponding to the 
measurement errors and the deviations associated with the obtained 
configuration. In metric models f  is linear: 

 ijijij ebad +δ+= .                                                          (2.2) 

The values ( )ijf δ  are called disparities, and are usually represented by ijd̂ . As 
minimization objectives, different alternative loss functions can be considered 
based on the error ijijij dd̂e −= . The simplest form for the loss function is the 
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sum of the squared errors known as raw STRESS (Standardized Residuals Sum 
of Squares)  

( )
2/1
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Since this function is not invariant under uniform stretching and shrinking of 
the resulting configuration, a normalization factor is needed. 1STRESS− and 

2STRESS−  (Kruskal 1964, Kruskal, Carrol 1969) are the best-known 
formulae: 
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Since there is no analytical solution to the STRESS minimization problems, an 
iterative optimization procedure involving the approximation of disparities by 
distances is used. 

2.2 The PREFSCAL Algorithm 

To the authors’ knowledge, PREFSCAL (Busing et al. 2005) is the most recent 
algorithm specifically developed for MDU. It considers a new objective (loss) 
function: the penalized STRESS (P-STRESS)1 

 

                                                      
 
 
1
 The Penalized STRESS formula admits several variants depending on the adopted 

model and on two parameters’ values (Busing et al. 2005). The present formula 
corresponds to the model adopted in this work.    
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where ( )δcv  and ( )d̂cv  are the variation coefficients of input data and 
disparities respectively. The first factor of P-STRESS corresponds 
toSTRESS-1. The second factor was an innovation proposed in order to 
penalize solutions with "small" variation coefficients for disparities, trying to 
avoid degenerate solutions with equal inter-set distances.   

P-STRESS is minimized by an alternating iterative procedure. It alternates 
between updating the configuration given a current estimate of the disparities, 
and updating the disparities given a current estimate of the configuration. Both 
steps are carried out using an iterative majorization procedure for minimizing P-
STRESS (Busing et al. 2005, Borg, Groenen 2005). 

3. Wheat Plant Breeding Data Analysis  

3.1 The Data 

The present work suggests MDU analysis as an exploratory tool to support a 
preliminary analysis of plant breeding data. The results provide information 
concerning the relationships between cultivars and environments based on the 
cultivars’ yields for each environment. 

The data relate to a wheat plant breeding program in Portugal (1986–1999), 
kindly forwarded by the Portuguese Plant Breeding Station. The data used 
correspond to nine years. For each year, a series of trials on cultivars are 
conducted at several locations, allowing study of the responses of the same set 
of varieties to different environmental conditions. For each location and year 
there are four replicates of the yield per cultivar. The locations and cultivars 
used in each year are presented in Table 1. This plant breeding program was 
managed without taking account of objective criteria,  selection of cultivars 
being based on experts’ knowledge and practical experience. 
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Table 1. Cultivars and locations used in each year 

 

3.2. MDU Analysis 

Let r,l,t,iy  represent the data on the yield observed for the ith cultivar in year t, 
location l and repetition r, with tI,...,1i = , 9,...,1t = , tL,...,1l =  and 

4,...,1r = , where  tI  and tL  refer to the number of cultivars and locations 
respectively, considered in year t. 

Since the selection process is typically analyzed yearly and the set of 
cultivars used changes accordingly, an MDU analysis is performed for each 
year. For a given year2, a dissimilarity measure is considered  

( )δ = −ij ij ijS
Max y y ,                                                                    (3.1) 

where ijy  is the yield of the ith cultivar in environment j , S  the set of all ijy  
and each environment j  corresponds to a pair (location, repetition), with 

I,...,1i =  and J,...,1j = . In the proposed approach each repetition in the same 
location is characterized by different environmental conditions. Thus the MDU 
input data matrix is given by [ ]ij)JI( δ=∆ × .  

                                                      
 
 
2 For notational simplicity, the index t (referring to the year) is dropped. 

Years 
 1986 1987 1988 1989 1991 1992 1995 1997 1999 
 
C 
U 
L 
T 
I 
V 
A 
R 
S 
 

anza 
flycatcher 
hahn-s 
lima1 
miwivet-s 
neelkant-s 
sunbird-s 
te8401 
te8501 
te8502 
te8504 

anza 
flycatcher 
hahn-s 
lima1 
miwivet-s 
te8501 
te8502 
te8504 
te8601 
te8602 
te8603 

anza 
flycatcher 
lima1 
te8501 
te8502 
te8504 
te8601 
te8602 
te8603 
te8701 
te8702 

almansor 
alva 
anza 
lima1 
liz1 
liz2 
te8603 
te8701 
te8702 
te8801 
te8802 

almansor 
anza 
lima1 
milan 
te8802 
te8901 
te8902 
te8906 
te9001 
te9002 
te9003 

almansor 
anza 
mondego 
te9002 
te9101 
te9102 
te9111 
te9112 
te9113 
te9114 
 

almansor 
anza 
te9111 
te9112 
te9113 
te9114 
te9203 
te9301 
te9302 
te9303 
te9406 

almansor 
anza 
te9113 
te9114 
te9203 
te9301 
te9302 
te9303 
te9406 
te9503 
te9504 

almansor 
anza 
te9203 
te9406 
te9503 
te9504 
te9712 
te9713 
te9714 
te9715 
te9716 

 
Lo-
ca-
tions 

Almeirim  
Comenda 
Coruche 
Évora 
Mirandela 

Almeirim 
Coruche 
Fundão 

Beja 
E.N.M.P. 
Évora 
Fundão 
Lamaçais 

Beja 
E.N.M.P. 
Évora 
Fundão 
Mirandela 

Abrantes 
Beja 
E.N.M.P. 
Santarém 

Benavila 
E.N.M.P. 
Mirandela 
V.F. Xira 

Beja 
Comenda 
Revilheira 
 

Beja 
Comenda 
Revilheira 

Comenda 
Revilheira 
V.F. Xira 
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Metric MDU analysis is performed using the PREFSCAL algorithm3. For 
the starting configuration, 200 random starts are considered. In addition, the 
classical scaling configuration, which considers the triangular inequality for 
computing the distance values between rows and between columns, is used.  

 The MDU output provides the coordinates of the points representing 
cultivars and environments in the resulting bi-dimensional Euclidean map, 
illustrating their relationships. In this configuration, lower distances between the 
points correspond to higher yields. These distances can be used for selection of 
the best cultivar in a given environment.   

3.3 MDU Results 

In order to evaluate the quality of MDU results, the 2R  measure is used (e.g. 
Busing et al. 2005) 
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where d̂  and d  represent the average of disparities and distances respectively. 
It is the proportion of disparity variance which is accounted for by the distances 
in the map. 

The derived MDU maps regarding plant breeding data from 1986 to 1988 
are presented in the Appendix (Figures A.1 and A.2). In order to fully illustrate 
the maps’ interpretation, the year 1999 is considered (Figure 1). Results from 
MDU analysis correspond to a good model fit: R2 ranges from 0.785 to 0.966. 
This fact enables interpretation of the maps, which helps support the selection 
of cultivars. 

                                                      
 
 
3 SPSS implementation. 
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0.R2 = 902 

Figure 1. MDU result maps for 1999. The circles represent the locations and the stars 
the cultivars. Legend for locations: Comenda – COM; Revilheira – REV. The number 
after the location indicates the repetition. Below each map the R2 result is presented. 

 
In the maps, the lower is the distance between a cultivar and an environment, 
the higher is the yield. Thus for a given environment, the best cultivar is the 
closest one. For example, in the 1999 map (see Figure 1), the cultivar te9406 is 
the closest to the environment VFXIRA4, which means that this cultivar is the 
one with the highest yield for this environment.  

Furthermore, the map provides a global overview of the relationships 
between cultivars and environments. Some environments suggest particular 
productivity conditions. For example (see Figure 1), the environment REV4 is 
isolated, which means that it offers particular productivity conditions. The map 
also enables the identification of groups of environments characterized by 
similar productivity conditions, for example, the environments COM1, COM2, 
COM3 and COM4 constitute a separate group. Furthermore, the map also 
suggests the existence of cultivar groups characterized by similar yield 
behaviour for the considered environments. The cultivars are distributed into 
three distinct groups: 1) te9503 and te9504; 2) te9406; 3) the remaining 
cultivars. 
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3.4 LJRA in Plant Breeding Programs 

Linear Joint Regression Analysis (LJRA) integrates a set of techniques used to 
study the genotype ×  environment interactions (Aastveit, Mejza 1992). It has 
been widely used for comparison of cultivars’ performance. Specifically, it is 
based on a set of linear regressions, one per cultivar, which consider the yield as 
the dependent variable. The independent variable is the environmental index 
that measures, for each location, the corresponding productivity.  

Initially, randomized blocks were used and their mean yields were taken as 
the corresponding environmental indices. Later on, following Patterson and 
Williams (1976), α-designs, which have incomplete blocks, superseded 
randomized blocks. In this context, the environmental indices for each block 
could not be measured by the respective mean yield, which would lead to biased 
estimates. This problem was solved by the introduction of 2L environmental 
indices (Mexia et al 1999). The authors proposed approach relies on the 
application of a zigzag algorithm, which simultaneously estimates the 
regression coefficients and the environmental indices. Its estimation is based on 
the following quadratic goal function: 

( ) ( )∑∑
= =

β−α−=βα
I

1i

L

1l

2
liiililLII xywx,,S

 
In order to deal with different sets of cultivars, as well as of locations for each 
of the different years, the weights ilw  are considered (Dias 2000) which equal 
1[0] when the ith cultivar is present [absent] in the lth location. I and L refer to 
the number of cultivars and locations, respectively, considered in the year, and 

ily  is the mean yield corresponding to the four replicates of the ith cultivar in 
the lth location. 

The goal is to minimize S, obtaining estimates of the intercept iα  
( )I,...,1i = , of the iβ ( )L,...,1l = , the slope of the regression line to be 
adjusted for the ith cultivar and of the lx ( )L,...,1l =  the environmental indices. 
To perform the minimization, we may use the zigzag algorithm (Mexia et al. 
1999) in which the minimization is carried out alternately in the regression 
coefficients and in the environmental indices. Once the adjustment is complete, 
a joint representation of the regression estimated lines called the upper contour 
(introduced by Mexia et al. 1997) is obtained. The information supplied by the 
upper contour allows easy identification of cultivars with maximum yields, for 
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certain ranges of the environmental indices. Geometrically, the upper contour is 
a convex polygonal. The cultivars that appear on the upper contour are the 
dominant ones. For each one of these, there is a dominance range constituted by 
the environmental indices for which they have highest yield. Non-dominant 
cultivars should be compared with the dominant ones using the appropriate 
parametric tests (Pinto 2006). As a result of these comparisons, cultivars that are 
significantly dominated should be discarded. 

3.5 LJRA Results 

For each of the nine years presented in the data in section 3.1, the LJRA 
technique was applied. As a result of application of the zigzag algorithm, by 
year, the vector of estimated environmental indices is obtained, as well as the 
regression estimated lines for each one of the cultivars. Once the adjustment is 
complete, a joint representation of the regression estimated lines – the upper 
contour – is obtained (for more details see Pinto 2006). The derived results 
enable one to select the best cultivar for each environment. 

In order to fully illustrate such a process, the year 1999 is considered. The 
results of the zigzag algorithm, estimated environmental indices and coefficients 
of the estimated regression lines are presented in Tables 2 and 3 respectively. 
The corresponding determination coefficients range from 0.709 to 0.909. In 
Figure 2 the estimated regression lines are represented, where the bold line 
defines the upper contour. The estimated lines that integrate the upper contour 
correspond to the dominant cultivars. They have higher estimated yields for 
certain ranges of environmental indices.  

 
Table 2. The estimated environmental indices for 1999 

Environments Comenda Revilheira V.F.Xira 

lx̂  3.828 3.054 5.271 
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Table 3. Coefficients of the estimated regression lines for the cultivars in 1999 

Culti-vars alman-sor anza te9203 te9406 te9503 te9504 te9712 te9713 te9714 te9716 

iα̂  0.573 0.347 0.278 -1.318 -0.505 -1.152 0.182 -0.511 1.080 0.756 

iβ̂  0.843 0.872 0.936 1.440 1.019 1.235 0.961 1.209 0.785 0.819 

 

Table 4 shows the dominant cultivars and the corresponding dominance 
ranges for the year 1999. 

Finally, given an environment, the selection of the best cultivar proceeds as 
follows. For example, . considering the environment VFXIRA, the corres-
ponding estimated environmental index is 5.271 (Table 2). This value belongs 
to the second dominance range (Table 4), leading to identification of te9406 as 
the dominant cultivar.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Upper contour obtained for the year 1999 
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Table 4. Derived dominance ranges and the corresponding dominant cultivars for 1999 

Dominance Range Dominant Cultivar 

[2.901, 3.66 ] te9714 

[3.66,  5.422] te9406 

4. Discussion and Perspectives 

In present work we first propose MDU analysis as an exploratory tool making it 
possible to obtain preliminary conclusions regarding the relationships between 
cultivars and the environments. Observing the MDU output map, we easily 
obtain information concerning the cultivars’ performance. Specifically, for each 
environment, the best cultivar is the closest one.   

In addition, the LJRA is suggested in order to quantify the obtained 
preliminary results, providing them with inferential support.  

For testing the association between LJRA and MDU results, concerning the 
selection of the best cultivar, the chi-square test is used. For each environment 
(location, year), the cultivars are dichotomically classified as being or not being 
the best ones according to the classification criteria based on the results from 
both techniques. The test indicates rejection of the null hypotheses at a 
significance level of 0.001 (p-value close to zero). Thus there is significant 
agreement between the MDU and LJRA results.  

Furthermore, MDU provides an additional advantage related to its easily 
interpreted results. In fact, simplicity and interpretability may be considered the 
main advantages of the proposed approach.  

The research presented in this paper suggests a methodology for the analysis 
of data from plant breeding programs. It uses MDU as an exploratory tool and 
LJRA for conducting an inferential study. Future work could use more complex 
models to reach a more detailed inferential analysis (e.g. Calinski et al. 1997, 
Calinski et al. 2005).  

Finally, additional information concerning the characterization of 
environments could improve the analysis of the responses of the different 
varieties to environmental conditions.  
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5. Appendix 
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Figure A.1. MDU result maps for 1986, 1987, 1988 and 1989. The circles represent the 
locations and the stars the cultivars. Legend for locations: Almeirim – ALM; Comenda 

– COM; Coruche – COR; Évora – EVO; Fundão – FUN; Lamaçais – LAMA. 
The number after the location indicates the repetition. Below each map the 2R  result 

is presented 
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Figure A.2. MDU result maps for 1991, 1992, 1995 and 1997. The circles represent the 
locations and the stars the cultivars. Legend for locations: Abrantes – ABRAN; 

Santarém – SANT; Mirandela – MIR; Benavila – BEN; Comenda – COM; Revilheira- – 
VER. The number after the location indicates the repetition. Below each map the 2R  

result is presented. 
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