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SUMMARY

In the present work Multidimensional Unfolding (MDi$ suggested as a new approach
to support decision-making in plant breeding proggalt is an exploratory data analysis
technique that yields the construction of a maptuping the attractiveness of cultivars
towards planting environments. The proposed appréadlustrated using data from a
wheat plant breeding program in Portugal (1986-1984DU precedes the use of
Linear Joint Regression Analysis (LJRA) (e.g. Pia@®6) in the study of relationships
between cultivars and environments, taking intooaot the cultivars’ performance
evaluation. As regards the selection of the bedtivars, both approaches agree.
Furthermore, MDU provides an additional advantagjated to its easily interpreted
results. In fact simplicity and interpretability ynee considered the main advantages of
the proposed approach.

Key words: Multidimensional Unfolding, Linear Joint Regressidmalysis, Plant
Breeding Programs, Cultivar Selection.

1. Introduction

In a plant breeding program, a set of experimegtaioduring a certain
number of years and locations (environments) withopen set of cultivars.
This means that during the breeding program, anivare discarded at the
same time as new ones are admitted into the plau$e of different locations
provides information concerning the responses ef diifferent varieties to
environmental conditions characterized by a setfamftors (e.g. climatic
conditions and types of soil). The selection precdssbased on the cultivars’
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performance measured by the corresponding yialdaddlition, the genotype
environment interactions are taken into accountef@luation of the cultivars’
performance.

Multidimensional Unfolding (MDU) is a spatial distee model for the
proximities between elements from two distinct grewf entities. The MDU
output is a map where the elements of both seentifies are represented by
points and the distances between them represeninfhg proximity data.
Common applications of MDU refer to non-metric datigpically subjects’
preferences for a set of objects or stimulus, margeand psychometry being
the best-known fields of application (Desarbo et1897, Carrol, Green 1997,
Heiser, Busing 2004).

The present work suggests the use of metric MDldostruct a map
representing data on cultivars’ performance. In(thwe-dimensional Euclidean)
derived map, cultivars and environments are reptedeby points, and the
yield of each cultivar in a given environment iss@dated with the
corresponding distance. Besides this introductithie, paper contains three
sections. In the following section the metric MDWael is presented, as well
as the PREFSCAL algorithm which is used to perfédU analysis. In the
third section, an application using the Portuguelseat plant breeding program
data (1986-1999) is presented, illustrating the afs®DU. This analysis is
complemented by the use of an inferential tool fAelr Joint Regression
Analysis (LJRA) — which is commonly used in plantedding program
management. In the final section the applicaticulte are discussed and some
future research topics are suggested.

2. Multidimensional Unfolding

MDU input refers to two-mode, two-way data, cor@sging to the
proximities between the elements from two distigetis of entities. The goal of
MDU is to obtain a configuration (commonly bi-dingonal and Euclidean)
where the elements of both sets are representpdibis. In the output map, the
distances between the elements of one set of emtiglative to the other
represent the initial proximity data. The transfatibn process of proximities
into distances depends on the metric nature ofirpet data: a distinction is
made between metric and non-metric approachesndhanetric models refer
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to ordinal data (e.g. subjects’ preferences fagtasobjects). In the metric case
the input data refer to distance measures.

The unfolding model introduced by Coombs (1950) weseralized to the
multidimensional case by Bennet, Hays (1960). Trerggnal techniques are
non-metric.

Schonemann (1970) found an algebraic solution égptloblem of locating
two sets of points in a joint space, given the Eieen distances between the
elements of both sets. The metric MDU techniqueanakpossible to represent
H-dimensional data distances with a map (2 dimersgigroviding the fit
between the original distances and the final coméigon.

Further developments for multidimensional unfoldicen be found in the
context of multidimensional scaling, where unfolylinis seen as a
multidimensional scaling problem of off-diagonal tnzes (e.g. Borg, Groenen
2005).

2.1 TheMetric MDU Model

Metric MDU input data can either be a matrix ofsiligilarities or a matrix of
similarities between the elements of two sets diities. Let o; be the
dissimilarity between (i =:L...,I)andj (j =L...,J) elements of the first and
second sets respectively. Then the input dissitidarmatrix iA ., = [6”.].
The MDS output is a configuration in a bi-dimensibEuclidean space, where
the elements of both sets are represented by paititsoordinatesu; and v, ,
and the Euclidean distance between them is detyted.

The relationship betweed, andd; is given by

d; =f (Sij )+q1 - (2.1)

f being a parametric function, arg} the random part corresponding to the
measurement errors and the deviations associateti trie obtained
configuration. In metric model§ is linear:

d; =a+hd, +e. (2.2)
The valuesf (6ij) are called disparities, and are usually represlehy&;iij. As

minimization objective§, different alternative Idsmctions can be considered
based on the erref =d; —d; . The simplest form for the loss function is the
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sum of the squared errors known as raw STRESSd&tdized Residuals Sum
of Squares)

1/2
A 5
raw-STRESS= (ZZ(dU —dij) j : (2.3)

i=1 j=1
Since this function is not invariant under unifostnetching and shrinking of
the resulting configuration, a normalization faciemeededSTRESS-1and
STRESS-2 (Kruskal 1964, Kruskal, Carrol 1969) are the Hbeasiwn
formulae:

I Joq. 1/2
ZZ(du_du)
STRESS-1=| == — . (2.4)
2. d;
i=1 j=1
| J /. 1/2
ZZ(du _du)
STRESS-2=| 5 (2.5)

ZJ: (dij B a)2

i=1 j=1

Since there is no analytical solution to the STRE8&MIzation problems, an
iterative optimization procedure involving the apfimation of disparities by
distances is used.

2.2 The PREFSCAL Algorithm

To the authors’ knowledge, PREFSCAL (Busing eR@D5) is the most recent
algorithm specifically developed for MDU. It consid a new objective (loss)
function: the penalized STRESS (P-STRESS)

! The Penalized STRESS formula admits several varidapending on the adopted
model and on two parameters’ values (Busing et2@805). The present formula
corresponds to the model adopted in this work.
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1/2

(2.6)

where cv(6) and Cv(a) are the variation coefficients of input data and
disparities respectively. The first factor of P-HFS corresponds
toSTRESS-. The second factor was an innovation proposed rderoto
penalize solutions with "small" variation coeffiots for disparities, trying to
avoid degenerate solutions with equal inter-s¢adies.

P-STRESS is minimized by an alternating iterativecpdure. It alternates
between updating the configuration given a curestimate of the disparities,
and updating the disparities given a current eséméthe configuration. Both
steps are carried out using an iterative majonmaprocedure for minimizing P-
STRESS (Busing et al. 2005, Borg, Groenen 2005).

3. Wheat Plant Breeding Data Analysis

3.1 The Data

The present work suggests MDU analysis as an explgr tool to support a
preliminary analysis of plant breeding data. Theults provide information
concerning the relationships between cultivars eamdronments based on the
cultivars’ yields for each environment.

The data relate to a wheat plant breeding prograRortugal (1986-1999),
kindly forwarded by the Portuguese Plant Breedingti&. The data used
correspond to nine years. For each year, a sefiddats on cultivars are
conducted at several locations, allowing studyhef tesponses of the same set
of varieties to different environmental conditio®®r each location and year
there are four replicates of the yield per cultivBlhe locations and cultivars
used in each year are presented in Table 1. Thi#t jpreeding program was
managed without taking account of objective criteriselection of cultivars
being based on experts’ knowledge and practicatmsmpce.
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Table 1. Cultivarsand locations used in each year

Years
1986 1987 1988 1989 1991 1992 1995 1997 1999
anza anza anza almansor almansor almansor almansor almansor almansor
C flycatcher flycatcher flycatcher alva anza anza anza anza anza
] hahn-s hahn-s limal anza limal mondego  te9111 te9113 te9203
L limal limal te8501 limal milan te9002 te9112 te9114 te9406
T miwivet-s  miwivet-s  te8502 lizd te8802 te9101 te9113 te9203 te9503
| neelkant-s te8501 te8504 liz2 te8901 te9102 te9114 te9301 te9504
\% sunbird-s  te8502 te8601 te8603 te8902 te9111 te9203 te9302 te9712
A te8401 te8504 te8602 te8701 te8906 te9112 te9301 te9303 te9713
R te8501 te8601 te8603 te8702 te9001 te9113 te9302 te9406 te9714
S te8502 te8602 te8701 te8801 te9002 te9114 te9303 te9503 te9715
te8504 te8603 te8702 te8802 te9003 te9406 te9504 te9716
Almeirim  Almeirim  Beja Beja Abrantes  Benavila Beja Beja Comenda
Lo- Comenda Coruche E.N.M.P. E.N.M.P. Beja E.N.M.P. Comenda Comenda Revilheira
ca- Coruche Fundéo Evora Evora E.N.M.P. Mirandela Revilheira Revilheira V.F. Xira
tions  Evora Fundéo Fundéo Santarém V.F. Xira
Mirandela Lamacais Mirandela

3.2. MDU Analysis

Let y,.,, represent the data on the yield observed fortthediltivar in year t,
location | and repetition r, withi =1,...,1,, t=1..9, I=1...,L, and
r=1...4, where I, and L, refer to the number of cultivars and locations
respectively, considered in year t.

Since the selection process is typically analyzedrly and the set of
cultivars used changes accordingly, an MDU analisiperformed for each
year. For a given ye%lra dissimilarity measure is considered

g =Max(y,)-,. 3.1)

wherey; is the yield of the ith cultivar in environment S the set of ally;
and each environmenj corresponds to a pair (location, repetition), with
i=1..,1 andj=1,...,J. In the proposed approach each repetition in dinees
location is characterized by different environmétanditions. Thus the MDU
input data matrix is given ., = [Bij ]

% For notational simplicity, the index(referring to the year) is dropped.
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Metric MDU analysis is performed using the PREFSC@lgorithn?. For
the starting configuration, 200 random starts ayesiered. In addition, the
classical scaling configuration, which considers thiangular inequality for
computing the distance values between rows anddeetwolumns, is used.

The MDU output provides the coordinates of thentsirepresenting
cultivars and environments in the resulting bi-disienal Euclidean map,
illustrating their relationships. In this configticm, lower distances between the
points correspond to higher yields. These distanaesbe used for selection of
the best cultivar in a given environment.

3.3 MDU Results

In order to evaluate the quality of MDU resultse tR* measure is used (e.g.
Busing et al. 2005)

J

: Z(dij _a)z

|
R* === (3.2)

L J .. =2
i=1 j=1

J

whered and d represent the average of disparities and distaresg®ctively.
It is the proportion of disparity variance whichaiscounted for by the distances
in the map.

The derived MDU maps regarding plant breeding diatan 1986 to 1988
are presented in the Appendix (Figures A.1 and.ArRprder to fully illustrate
the maps’ interpretation, the year 1999 is considi€Figure 1). Results from
MDU analysis correspond to a good model fit:rBnges from 0.785 to 0.966.
This fact enables interpretation of the maps, witielps support the selection
of cultivars.

¥ SPSS implementation.
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Figure 1. MDU result maps for 1999. The circles representdbations and the stars
the cultivars. Legend for locations: Comenda — C®dyilheira — REV. The number
after the location indicates the repetition. Belaeh map th&” result is presented.

In the maps, the lower is the distance betweenltav&uand an environment,
the higher is the yield. Thus for a given environinghe best cultivar is the
closest one. For example, in the 1999 map (sead-iy the cultivar te9406 is
the closest to the environment VFXIRA4, which metrat this cultivar is the
one with the highest yield for this environment.

Furthermore, the map provides a global overviewth#d relationships
between cultivars and environments. Some envirotsneuggest particular
productivity conditions. For example (see Figurethg environment REV4 is
isolated, which means that it offers particulardqudtivity conditions. The map
also enables the identification of groups of enwinents characterized by
similar productivity conditions, for example, theveonments COM1, COM2,
COM3 and COM4 constitute a separate group. Furtbermthe map also
suggests the existence of cultivar groups chaiaetérby similar yield
behaviour for the considered environments. Theiveuk are distributed into
three distinct groups: 1) te9503 and te9504; 2269 3) the remaining
cultivars.
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3.4 LJRA in Plant Breeding Programs

Linear Joint Regression Analysis (LJRA) integradeset of techniques used to
study the genotyp& environment interactions (Aastveit, Mejza 1992)has
been widely used for comparison of cultivars’ perfance. Specifically, it is
based on a set of linear regressions, one pevayltvhich consider the yield as
the dependent variable. The independent variabtbdsenvironmental index
that measures, for each location, the correspormhoductivity.

Initially, randomized blocks were used and theimamgields were taken as
the corresponding environmental indices. Later follpwing Patterson and
Williams (1976), a-designs, which have incomplete blocks, superseded
randomized blocks. In this context, the environrabmidices for each block
could not be measured by the respective mean yiglth would lead to biased
estimates. This problem was solved by the intradocof L, environmental
indices (Mexia et al 1999). The authors proposedragrh relies on the
application of a zigzag algorithm, which simultansly estimates the
regression coefficients and the environmental ieglidts estimation is based on
the following quadratic goal function:

I L

S(al B ’XL):;;WH (yu - _Bix|)2

=
In order to deal with different sets of cultivaas, well as of locations for each
of the different years, the weightg, are considered (Dias 2000) which equal
1[0] when the ith cultivar is present [absent] e 1th location. | and L refer to
the number of cultivars and locations, respectivebnsidered in the year, and
y; is the mean yield corresponding to the four repés of the ith cultivar in
the Ith location.

The goal is to minimize S, obtaining estimates bé tintercept a;
(i=1...,1), of the B, (I =1...,.L), the slope of the regression line to be
adjusted for the"i cultivar and of thex, (I ::L...,L) the environmental indices.
To perform the minimization, we may use the zigadgprithm (Mexia et al.
1999) in which the minimization is carried out aliately in the regression
coefficients and in the environmental indices. Otimeadjustment is complete,
a joint representation of the regression estimbied called the upper contour
(introduced by Mexia et al. 1997) is obtained. Ttifermation supplied by the
upper contour allows easy identification of cultsvavith maximum yields, for
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certain ranges of the environmental indices. Genoadlly, the upper contour is
a convex polygonal. The cultivars that appear an apper contour are the
dominant ones. For each one of these, there isnindace range constituted by
the environmental indices for which they have hgihgeld. Non-dominant
cultivars should be compared with the dominant onsisg the appropriate
parametric tests (Pinto 2006). As a result of tleeseparisons, cultivars that are
significantly dominated should be discarded.

3.5 LJRA Results

For each of the nine years presented in the datseation 3.1, the LIJRA
technique was applied. As a result of applicatibrihe zigzag algorithm, by
year, the vector of estimated environmental indisegbtained, as well as the
regression estimated lines for each one of thevamt Once the adjustment is
complete, a joint representation of the regressistimated lines — the upper
contour — is obtained (for more details see Pifi66}. The derived results
enable one to select the best cultivar for eacir@mwent.

In order to fully illustrate such a process, thary®999 is considered. The
results of the zigzag algorithm, estimated envirental indices and coefficients
of the estimated regression lines are presentdailies 2 and 3 respectively.
The corresponding determination coefficients rafrgen 0.709 to 0.909. In
Figure 2 the estimated regression lines are repiesgewhere the bold line
defines the upper contour. The estimated linesithagrate the upper contour
correspond to the dominant cultivars. They havehdiigestimated yields for
certain ranges of environmental indices.

Table 2. The estimated environmental indices for 1999

Environments Comenddevilheira V.F.Xira

X, 3.828 3.054 5271
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Table 3. Coefficients of the estimated regression linegfiercultivars in 1999

Culti-vars  alman-sor anza te9203 te9406 te9503 te9504 te97129713 te9714 te9716

(Xi 0.573 0.347 0.278 -1.318 -0.505 -1.152 0.182 -0.5111.080 0.756

=

0.843 0.872 0.936 1.440 1.019 1.235 0.961 1.209 850.7 0.819

Table 4 shows the dominant cultivars and the cparding dominance
ranges for the year 1999.

Finally, given an environment, the selection of liest cultivar proceeds as
follows. For example, . considering the environm&#XIRA, the corres-
ponding estimated environmental index is 5.271 [@&). This value belongs
to the second dominance range (Table 4), leadindetatification of te9406 as
the dominant cultivar.

74
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—e— 129406 0 te9504 ---A---1e9713 X 1€9503
—x—1te9712 ---e--- 19203 —+—1e9715 anza

Almansor —-o--1t€9716 e te9714

Figure 2. Upper contour obtained for the year 1999
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Table 4. Derived dominance ranges and the correspondingrdorhcultivars for 1999

Dominance Range Dominant Cultivar
[2.901, 3.66 ] te9714
[3.66, 5.422] te9406

4. Discussion and Per spectives

In present work we first propose MDU analysis aggploratory tool making it
possible to obtain preliminary conclusions regagdine relationships between
cultivars and the environments. Observing the MDldpat map, we easily
obtain information concerning the cultivars’ perfance. Specifically, for each
environment, the best cultivar is the closest one.

In addition, the LJRA is suggested in order to d¢ifyanthe obtained
preliminary results, providing them with inferettsapport.

For testing the association between LIRA and MD&ulte, concerning the
selection of the best cultivar, the chi-square iestsed. For each environment
(location, year), the cultivars are dichotomicallgssified as being or not being
the best ones according to the classification riiteased on the results from
both techniques. The test indicates rejection @& thull hypotheses at a
significance level of 0.001 (p-value close to zerbhus there is significant
agreement between the MDU and LJRA results.

Furthermore, MDU provides an additional advantagjated to its easily
interpreted results. In fact, simplicity and int&tability may be considered the
main advantages of the proposed approach.

The research presented in this paper suggestshadadngy for the analysis
of data from plant breeding programs. It uses MBlha exploratory tool and
LJRA for conducting an inferential study. Futurerivoould use more complex
models to reach a more detailed inferential ansil{sig. Calinski et al. 1997,
Calinski et al. 2005).

Finally, additional information concerning the cheterization of
environments could improve the analysis of the wasps of the different
varieties to environmental conditions.
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5. Appendix
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Figure A.1. MDU result maps for 1986, 1987, 1988 and 1989. ditees represent the
locations and the stars the cultivars. Legenddoations: Almeirim — ALM; Comenda
— COM; Coruche — COR; Evora — EVO; Funddo — FUNhaais — LAMA.
The number after the location indicates the reipetiBelow each map the? result
is presented
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Figure A.2. MDU result maps for 1991, 1992, 1995 and 1997. ditedes represent the
locations and the stars the cultivars. Legenddoations: Abrantes — ABRAN;
Santarém — SANT; Mirandela — MIR; Benavila — BENin@nda — COM; Revilheira- —
VER. The number after the location indicates thpetidion. Below each map the?
result is presented.
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